
An Interactive Simulator for 2-Dimensional Incompressible
Stable Fluids with OpenGL and CUDA

Andrew Blackwell
blackwellaf@appstate.edu

Appalachian State University
(Dated: December 4, 2025)

This report presents the implementation of a two-dimensional incompressible fluid simulator writ-
ten in CUDA to run in real time on a consumer GPU. After finishing my multi-threaded CPU-based
stable-fluids solver over the beginning of winter break, I stumbled upon an NVIDIA RTX 3080 (which
tend to be priced reasonably these days) and decided to try a similar hydrophysics project on the
GPU and see how far it could be pushed with some creative optimizations. This solver follows
Stam’s stable fluids method (Stam, 1999): semi-Lagrangian advection on a uniform grid, followed
by an iterative pressure projection to enforce incompressibility. OpenGL–CUDA interoperability
keeps the velocity and dye fields on the GPU for visualization, while mouse input injects dye and
momentum and runtime controls adjust ∆t, viscosity, solver iterations, and decay. Results include
figures and timing tables, with benchmarks showing large speedups over the earlier CPU version
and sustained interactive rates (e.g., 60+ FPS at 1024× 1024).

I. INTRODUCTION

Fluid flow phenomena are governed by the
Navier–Stokes equations, which, for an incompress-
ible fluid, consist of a momentum conservation equation
and a continuity constraint for mass conservation. In
continuous form, the equations can be written as:

∂u

∂t
+(u ·∇)u = −1

ρ
∇p+ ν∇2u+F, ∇·u = 0, (1)

where u(x, t) is the fluid velocity field, p(x, t) is pres-
sure, ρ is fluid density (assumed constant), ν is kine-
matic viscosity, and F(x, t) represents external forces
(Stam, 1999). The momentum equation captures self-
advection, pressure forces, and viscous diffusion; the con-
tinuity equation enforces incompressibility by requiring a
divergence-free velocity field.

Solving these coupled, nonlinear equations efficiently is
difficult in a real-time setting because incompressibility
introduces a global dependency: each time step requires
a pressure projection, which reduces to solving a Pois-
son equation over the entire grid. As grid resolution in-
creases, this quickly becomes a memory-bandwidth prob-
lem. A 2048 × 2048 domain contains over four million
cells, and a pressure solve that runs for dozens of itera-
tions per frame becomes many full-domain stencil passes.

GPUs are a natural fit for this workload. The simula-
tion step is dominated by dense, regular per-cell opera-
tions (advection sampling and stencil updates) with high
arithmetic locality and predictable control flow. Com-
pared to a CPU implementation, the GPU can sustain
far higher throughput on these kernels by running many
threads in parallel and by providing substantially higher
memory bandwidth.

This report describes a CUDA implementation of
Stam’s stable fluids pipeline [1] integrated into an in-
teractive application that allows dye and momentum in-
jection with mouse input and real-time parameter con-
trol. TheMethods section will summarize the numerical

method (semi-Lagrangian advection and pressure projec-
tion). The subsequent Implementation section will de-
tail the CUDA kernels, data layout, and OpenGL interop-
erability used for real-time visualization. Lastly, the Re-
sults presents performance results across grid sizes and
solver settings, followed by a Discussion on limitations
and future work.

FIG. 1. A screenshot of the application running.

II. STABLE FLUIDS ALGORITHM

The simulator uses a grid-based solver for the two-
dimensional incompressible Navier–Stokes equations, fol-
lowing the stable fluids approach [1] with operator split-

Want to see my code? The multi-threaded CPU-based simulator is available here: GitHub repo.

mailto:blackwellaf@appstate.edu
https://github.com/AndrewBlackwell/fluid-sim/tree/main

2

ting. The domain is discretized into a uniform grid stor-
ing velocity and a dye field (a passive scalar used to visu-
alize motion). Time advances in discrete steps, and each
step updates these fields through a small set of substeps
that isolate the main physical effects: external forcing,
advection, diffusion, and pressure projection. This struc-
ture keeps the solver stable and makes each stage easy to
reason about and implement.

A. External Forces

Each step begins by adding forces into the velocity
field. In this application, the dominant forces come from
user input: mouse dragging injects momentum (and dye)
over a small radius around the cursor. Optional constant
forces (e.g., gravity-like terms) fit into the same mech-
anism. Using explicit Euler integration, the force term
updates velocity as

u← u+∆tF. (2)

B. Advection

Advection transports a quantity along the flow. For ve-
locity, this is the nonlinear self-advection term (u · ∇)u;
for dye, it simply means the dye rides along with the ve-
locity field. The solver uses semi-Lagrangian advection
(Stam, 1999), which traces backward from each cell cen-
ter to find where the fluid came from over the last time
step. For a grid location x,

xprev = x−∆tu(x), (3)

and the updated field is sampled from the previous field
at that departure point,

q(x, t+∆t) = q(xprev, t). (4)

Because xprev is generally not on a grid point, sampling
uses bilinear interpolation. Semi-Lagrangian advection
remains stable for large ∆t, but it is numerically diffusive:
repeated interpolation gradually smooths fine-scale dye
structure and small vortices.

C. Diffusion

Viscosity introduces diffusion through the term ν∇2u,
which damps sharp velocity gradients over time. The
diffusion step is treated implicitly to avoid small time-
step restrictions. Discretizing diffusion with backward
Euler yields a linear system of the form(

I − ν∆t∇2
)
unew = uadv, (5)

where uadv is the velocity after advection. The solve is
performed with a fixed number of Jacobi iterations, con-
trolled by a runtime parameter. Each iteration replaces a

cell’s value with a weighted combination of its neighbors
and the right-hand side, which gradually relaxes high-
frequency components. Increasing viscosity or iteration
count produces a smoother, more quickly damped flow;
low viscosity preserves sharper vortical motion.

FIG. 2. Semi-Lagrangian backtrace from a cell center x to a
departure point xprev and bilinear sampling of the previous
field.

D. Pressure Projection

After advection and diffusion, the velocity field is gen-
erally not divergence-free. The projection step enforces
incompressibility by solving a Poisson equation for a
scalar potential whose gradient removes the divergent
component of the flow. In continuous form this is often
written in terms of physical pressure p as

∇2p =
ρ

∆t
∇ · unew, (6)

followed by a correction

u← unew −
∆t

ρ
∇p. (7)

In the implementation, it is more convenient to solve di-
rectly for a scaled “pressure-like” field,

p̃ ≡ ∆t

ρ
p, (8)

which yields the equivalent grid-units form

∇2p̃ = ∇ · unew, u← unew −∇p̃. (9)

With ∆x = 1 in simulation units, the discrete solve uses
the standard five-point stencil and Jacobi relaxation. A

3

moderate iteration count (e.g., 20–50) is sufficient for vi-
sually stable incompressible motion, while higher itera-
tion counts reduce residual divergence at a predictable
performance cost.

After projection, the velocity field is ready for the next
time step. The dye field, after advection, can optionally
be decayed each frame to prevent indefinite buildup:

d← (1− λ∆t) d, (10)

with decay rate λ controlled at runtime.
Boundary conditions close the domain. In this imple-

mentation the grid boundary is treated as a solid wall by
excluding edge cells from stencil updates and by clamp-
ing sampling locations during advection so that back-
traced positions remain within the valid interior region.
This prevents out-of-bounds reads and keeps dye and
momentum contained, but it should be understood as
an approximate wall treatment rather than a fully ex-
plicit boundary-condition solve. In practice, the bound-
ary handling is implemented implicitly: stencil kernels
simply skip the outermost cells, and advection clamps de-
parture points to remain inside the interior. This avoids
a dedicated boundary “set” pass and is stable for the
interactive use-case here, but it can leave subtle edge ar-
tifacts compared to explicitly enforcing boundary values
after every stage.

III. IMPLEMENTATION

A. Data Structures and GPU Memory Layout

The simulation state is stored in a small set of 2D grids:
velocity in the x and y directions (u and v), pressure p,
divergence ∇ · u (as a temporary for projection), and
dye density d. On the GPU these are kept in device
global memory as pitched 2D allocations, so each row
is aligned for coalesced access. Concretely, each field is
allocated once at startup with cudaMallocPitch, and
the resulting pitch (in bytes) is carried through kernel
launches for indexing.

Grid resolution is selected at startup (e.g., 256 × 256
through 4096 × 4096). A square domain keeps indexing
and visualization simple, but nothing in the layout as-
sumes Nx = Ny. Within kernels, a cell (i, j) maps to a
linear element index via

idx = j · pitchElems+ i, (11)

where pitchElems is the row pitch expressed in elements
rather than bytes.

Several steps require reading the previous state while
writing a new one (notably advection and the iterative
solvers), so the implementation uses ping-pong buffers.
Velocity uses either two separate arrays for u and v or
a single float2 array; pressure uses two scalar buffers
swapped each Jacobi iteration; dye similarly uses two

buffers for advection. This avoids read-after-write haz-
ards and eliminates full-array copies inside tight iteration
loops.
Most kernels in the projection and diffusion stages are

stencil-based and repeatedly access a cell’s immediate
neighbors. To reduce redundant global reads, the pres-
sure and diffusion kernels load a tile of the input field into
shared memory, including a one-cell halo on each side.
Threads then compute their stencil from shared mem-
ory and write the updated value back to global memory.
This tiling reduces global memory traffic and makes per-
formance less sensitive to cache behavior at larger grid
sizes.

B. CUDA Kernels for Simulation Steps

Each stage of the stable fluids pipeline maps onto one
or more CUDA kernels launched over a 2D grid of thread
blocks. A typical configuration uses 16 × 16 or 32 × 32
threads per block, with one thread responsible for one
cell update. The CPU side is mostly orchestration: it se-
quences kernel launches, swaps ping-pong buffers, and
runs the iterative solvers for a configured number of
sweeps.
Instead of showing a full per-frame step function, List-

ing 1 shows the core host-side dispatch pattern used
throughout the codebase: launch a full-grid kernel, then
swap buffers when a stage needs a read-only input and a
separate output. The full step is then just these pieces
in a fixed order.

1 dim3 block(BLOCK_X , BLOCK_Y);

2 dim3 grid((width + block.x - 1) / block.x,

3 (height + block.y - 1) / block.y);

4

5 // advect dye (read prev -> write curr).

6 std::swap(dye , dye_prev);

7 advect_dye <<<grid , block >>>(dye , dye_prev , u, v,

dt, width , height , pitchElems);

Listing 1. Host-side dispatch pattern: launch a kernel and
swap ping-pong buffers.

Advection is implemented as two kernels (velocity and
dye) with the same structure: backtrace from the cell
center using the velocity field, clamp the departure point
to the valid sampling region, then bilinearly sample the
previous field at that location. Listing 2 shows the back-
trace and sampling core used by dye advection.

1 int i = (int)(blockIdx.x * blockDim.x +

threadIdx.x);

2 int j = (int)(blockIdx.y * blockDim.y +

threadIdx.y);

3 if (i >= width || j >= height) return;

4

5 int idx = j * pitchElems + i;

6

7 float x = (float)i + 0.5f;

8 float y = (float)j + 0.5f;

9

10 float velx = u[idx];

11 float vely = v[idx];

4

12

13 float xp = x - dt * velx;

14 float yp = y - dt * vely;

15

16 xp = fminf(fmaxf(xp , 0.5f), (float)width - 1.5f

);

17 yp = fminf(fmaxf(yp , 0.5f), (float)height - 1.5f

);

18

19 dyeOut[idx] = bilerp(dyeIn , pitchElems , xp - 0.5

f, yp - 0.5f, width , height);

Listing 2. Semi-Lagrangian backtrace and bilinear sampling
core used for dye advection.

The pressure solve and diffusion solve are both stencil-
based Jacobi relaxations. The pressure update follows
the standard five-point stencil form,

p
(k+1)
i,j =

1

4

(
p
(k)
i−1,j + p

(k)
i+1,j + p

(k)
i,j−1 + p

(k)
i,j+1 −∆x2 (∇ · u)i,j

)
,

(12)
with ∆x = 1 in simulation units. Each Jacobi sweep
is one kernel launch over the grid, followed by a buffer
swap. Listing 3 shows a single pressure sweep kernel.

1 int i = (int)(blockIdx.x * blockDim.x +

threadIdx.x);

2 int j = (int)(blockIdx.y * blockDim.y +

threadIdx.y);

3 if (i <= 0 || j <= 0 || i >= width - 1 || j >=

height - 1) return;

4

5 int idx = j * pitchElems + i;

6

7 float pL = pPrev[j * pitchElems + (i - 1)];

8 float pR = pPrev[j * pitchElems + (i + 1)];

9 float pB = pPrev[(j - 1) * pitchElems + i];

10 float pT = pPrev[(j + 1) * pitchElems + i];

11

12 pOut[idx] = 0.25f * (pL + pR + pB + pT - div[idx

]);

Listing 3. One Jacobi sweep for the pressure Poisson solve.

After pressure is computed, projection subtracts the
discrete pressure gradient from velocity using centered
differences in the interior. Listing 4 shows the per-cell
projection update.

1 int i = (int)(blockIdx.x * blockDim.x +

threadIdx.x);

2 int j = (int)(blockIdx.y * blockDim.y +

threadIdx.y);

3 if (i <= 0 || j <= 0 || i >= width - 1 || j >=

height - 1) return;

4

5 int idx = j * pitchElems + i;

6

7 float pL = p[j * pitchElems + (i - 1)];

8 float pR = p[j * pitchElems + (i + 1)];

9 float pB = p[(j - 1) * pitchElems + i];

10 float pT = p[(j + 1) * pitchElems + i];

11

12 u[idx] -= 0.5f * (pR - pL);

13 v[idx] -= 0.5f * (pT - pB);

Listing 4. Velocity projection: subtract discrete pressure
gradient (interior cells).

C. GPU–OpenGL Interoperability and
Visualization

Rendering the simulation in real time is part of the
point: without a fast visualization path, the solver
turns into an offline batch job. The application uses
OpenGL for rendering and SDL2 for windowing and
input. CUDA and OpenGL are connected through a
pixel buffer object (PBO) registered with CUDA via
cudaGraphicsGLRegisterBuffer. Each frame, the
PBO is mapped to a device pointer, a CUDA kernel
writes a colorized image from the dye (and optionally
velocity) fields directly into that buffer, and the buffer is
then unmapped and presented as a fullscreen textured
quad. This keeps the entire pipeline GPU-resident and
avoids readbacks to CPU memory.

The default visualization maps dye concentration
to a simple false-color ramp (low values dark, higher
values brighter). Velocity visualization is useful during
debugging, so there is an option to render either velocity
magnitude or a sparse vector overlay, but dye is the
primary display mode for interaction and demos.

Runtime controls are provided through Dear ImGui,
integrated into the same SDL2/OpenGL context. The UI
exposes the parameters that matter during experimenta-
tion: ∆t, viscosity, pressure iteration count, dye decay,
and force/dye injection strength. Reset controls clear
dye and/or velocity so the simulation can be restarted
without restarting the program.

Mouse input drives the interactive part. When the left
mouse button is held and dragged across the domain,
the code injects momentum in the direction of motion
and injects dye at the cursor position. The CPU collects
the cursor position and motion each frame, and a small
“splat” kernel applies these impulses over a configurable
radius in the next external-forces stage. The result feels
like painting: drawing quickly produces strong vortices,
while slower drags produce smooth stirring.

IV. RESULTS

TABLE I. Time scaling per one frame (forces, advection,
diffusion, projection, visualization) and measured speedup.

Grid Cells CPU (ms) GPU (ms) Speedup
512×512 262,144 55.7 2.49 22.4

1024×1024 1,048,576 317.4 9.87 32.2
2048×2048 4,194,304 1692.8 39.5 42.9
4096×4096 16,777,216 7641.3 157.6 48.5

5

TABLE II. GPU time breakdown per frame at 1024 × 1024
(mean over 1000 frames).

Stage Time (ms) Share (%)
Advection (velocity + dye) 1.62 16.4
Diffusion (16 iters) 2.78 28.2
Projection (div + pressure + subtract) 4.96 50.3
Visualization (PBO write + draw) 0.51 5.2
Total 9.87 100.0

The CUDA-based simulator produces visually plausi-
ble incompressible flow and remains interactive on a con-
sumer GPU. Correctness was checked qualitatively in the
ways that matter for an interactive stable-fluids solver:
dye does not exhibit obvious volume gain/loss beyond
the configured decay, stirring produces coherent vortices
that advect dye as expected, and motion damps out un-
der viscosity when input stops. The pressure projection
is the difference between “fluid” and “broken”: disabling
projection causes the velocity field to accumulate diver-
gence and visibly inflate/expand, while enabling projec-
tion keeps motion bounded and visually incompressible.
Pressure iteration count controls how tight the projection
is. Around 40 iterations produces a result that looks ef-
fectively divergence-free in motion, while very low counts
(e.g., 10) can leave mild compressibility artifacts under
strong forcing.

To quantify performance, the GPU implementation
was benchmarked against a comparable CPU baseline
across multiple grid sizes. Table I reports end-to-end

frame time for the full interactive pipeline (forces, advec-
tion, diffusion, projection, and visualization) using the
same solver settings across grid sizes. Table II breaks
down the 1024×1024 GPU entry in Table I into per-stage
costs, showing that projection dominates the frame time.
Diffusion uses 16 Jacobi iterations and pressure uses 40
iterations.
A breakdown of GPU time by substep was also

measured for a 1024 × 1024 run (averaged over a long
interactive capture). With diffusion enabled at 16
Jacobi iterations and pressure at 40 iterations, advection
(velocity + dye) took about 1.6ms, diffusion about
2.8ms, projection (divergence, pressure solve, gradient
subtraction) about 5.0ms, and visualization about
0.5ms, for a total of roughly 9.9ms per frame (∼ 101
FPS). As expected, the pressure solve dominates, as it
performs many full-grid stencil passes and tends to be
bandwidth-limited. The advection stage is compara-
tively cheap, and rendering overhead stays small because
the visualization path remains GPU-resident.

ACKNOWLEDGMENTS

In writing this software, I was continually inspired by
the creations of the Open-Source community, particularly
those who share their creations on Github and Shader-
Toy, as well as the innumerable online resources for learn-
ing computer graphics.

[1] J. Stam, Stable fluids, in Proceedings of the 26th Annual
Conference on Computer Graphics and Interactive Tech-
niques (SIGGRAPH ’99) (ACM Press/Addison-Wesley,
1999).

[2] M. Harris, Fast fluid dynamics simulation on the gpu,
in GPU Gems, edited by R. Fernando (Addison-Wesley,
Boston, MA, 2004) Chap. 38.

[3] R. Fedkiw, J. Stam, and H. W. Jensen, Visual simula-
tion of smoke, Proceedings of the 28th Annual Conference
on Computer Graphics and Interactive Techniques (SIG-
GRAPH ’01) (2001).

[4] S. Williams, A. Waterman, and D. Patterson, Roofline:

An insightful visual performance model for multicore ar-
chitectures, Communications of the ACM 52 (2009).

[5] CUDA C++ Programming Guide, NVIDIA Corporation
(2024), nVIDIA Developer Documentation.

[6] R. Fernando, ed., GPU Gems: Programming Techniques,
Tips and Tricks for Real-Time Graphics (Addison-Wesley,
Boston, MA, 2004).

[7] A. Blackwell, fluid-sim: Multithreaded cpu-based sta-
ble fluids simulator (source code), https://github.com/
AndrewBlackwell/fluid-sim/tree/main (2025), gitHub
repository. Accessed 2025-12-04.

https://www.github.com/
https://www.shadertoy.com/
https://www.shadertoy.com/
https://github.com/AndrewBlackwell/fluid-sim/tree/main
https://github.com/AndrewBlackwell/fluid-sim/tree/main

	An Interactive Simulator for 2-Dimensional IncompressibleStable Fluids with OpenGL and CUDA
	Abstract
	Introduction
	Stable Fluids Algorithm
	External Forces
	Advection
	Diffusion
	Pressure Projection

	Implementation
	Data Structures and GPU Memory Layout
	CUDA Kernels for Simulation Steps
	GPU–OpenGL Interoperability and Visualization

	Results
	Acknowledgments
	References

